手机浏览器扫描二维码访问
太阳计划的推进陷入了瓶颈,能量收集与转化效率远不及预期,愁云笼罩着整个科研团队。腾双眼布满血丝,正和团队成员激烈讨论,这时,英匆匆赶来。
腾抬起头,眼中满是疲惫与焦急:“英,你可来了。现在能量收集板的转化效率始终卡在30%,离我们设定的50%目标差太远。”
英看着满桌的资料和数据,神色凝重:“我一路上仔细想了,从生态科学角度,植物光合作用能高效利用光能,我们或许能从其原理找突破。你们目前尝试了哪些方向?”
团队成员马克推了推眼镜,说道:“我们已经优化了收集板的材料结构,尝试了十几种新型复合材料,可效果都不理想。而且,在能量转化的电路设计上,也反复调整,还是不行。”
英沉思片刻,问道:“那在模拟光合作用方面,有没有考虑过模拟其光反应阶段的电子传递过程?通过构建类似的高效电子传递链,也许能提升能量转化。”
腾眼睛一亮:“这个思路很新颖。但光合作用中的电子传递依赖于复杂的生物分子结构,在我们的设备上怎么模拟实现呢?”
英走到白板前,拿起笔边画边说:“我们可以用纳米材料构建类似的结构。比如,利用碳纳米管来模拟生物分子的传导路径,它的导电性和稳定性都很高。”
团队成员莉莉面露疑惑:“英博士,碳纳米管虽然性能好,但在大规模生产和整合到现有设备上,可能会面临成本和技术难题。”
英点点头:“这确实是个问题。不过我们可以先在实验室小规模试验,如果可行,再想办法优化生产工艺降低成本。另外,在能量收集阶段,我们是否可以改变收集板的表面微观结构?”
腾皱眉思考:“改变微观结构?你的意思是像植物叶子表面那样,有特殊的纹理来更好地捕获光能?”
“对!”英肯定地说,“植物叶子表面的微纳结构能减少光反射,增加光吸收。我们可以通过微纳加工技术,在收集板表面制造类似结构。”
团队成员汤姆挠挠头:“可不同波段的光,对微观结构的要求可能不同,我们该怎么平衡?”
英回答:“这就需要精确的光学模拟和实验测试。先确定主要吸收的光波段,针对性设计结构,再逐步优化。腾,你们之前对不同波段光的能量收集效率有详细数据吗?”
腾立刻翻找资料:“有!在可见光的蓝光和红光波段,收集效率相对较高,但近红外波段一直很低。”
英看着数据说:“那我们重点从近红外波段入手。近红外光能量丰富,提高它的收集效率对整体提升很关键。我们可以尝试在收集板表面添加对近红外光敏感的材料。”
马克疑惑道:“添加敏感材料不难,但怎么保证它与其他部分协同工作,不影响整体性能?”
英思索片刻:“可以通过在材料表面修饰特殊的官能团,使其与收集板的基础材料形成化学键合,增强相互作用。这样既能保证稳定性,又能协同工作。”
腾边记录边说:“这个方法值得一试。还有,在能量转化后的存储环节,我们也遇到了一些损耗问题。”
英问道:“是存储设备的漏电,还是转化过程中的能量散失?”
团队成员大卫回答:“两者都有。目前的电池储能效率不高,而且在充电过程中,有部分能量以热能形式散失了。”
英皱着眉头思考:“对于电池漏电问题,可以尝试给电池添加一层特殊的绝缘涂层,减少电子泄漏。至于能量散失为热能的问题,我们能不能在转化电路中加入高效的散热和能量回收装置?”
腾疑惑道:“能量回收装置?怎么实现?”
英解释:“当能量以热能形式散失时,我们可以利用热电材料,将热能重新转化为电能。虽然不能百分百回收,但能减少部分损耗。”
莉莉提出疑问:“热电材料的转化效率有限,会不会得不偿失?”
英说:“我们可以通过优化热电材料的成分和结构,提高转化效率。而且,即使只能回收一小部分能量,长期积累下来也很可观。”
汤姆又问:“那在设备的整体封装方面,要不要考虑特殊设计来减少能量损耗?”
英点头:“非常有必要。可以采用多层复合封装材料,既能保证设备的密封性,又能起到隔热、防辐射等作用,减少外界因素对能量收集和转化的干扰。”
腾看着团队成员,充满信心地说:“大家听到了吧,英博士给我们提供了这么多新思路。接下来,我们分组行动,一部分人研究模拟光合作用的电子传递,一部分人负责微纳结构设计和近红外光敏感材料添加,还有一组研究电池绝缘涂层和能量回收装置,以及设备封装。大家有没有信心?”
众人齐声喊道:“有!”
在接下来的日子里,团队成员日夜奋战。一周后,负责模拟光合作用电子传递的小组传来消息。
马克兴奋地冲进会议室:“成功了!利用碳纳米管构建的模拟电子传递链,在实验室测试中,将能量转化效率提高了5个百分点!”
腾激动地拍了拍马克的肩膀:“干得好!其他小组呢?”
负责微纳结构设计的莉莉笑着说:“我们在收集板表面制造出了类似植物叶子的微纳结构,近红外光的收集效率提高了8个百分点!”
负责能量回收和封装的大卫也笑着汇报:“电池绝缘涂层有效减少了漏电,能量回收装置也成功回收了约10%的热能,封装设计能有效降低外界干扰!”
腾看着大家,眼眶有些湿润:“太棒了,大家的努力没有白费。英,这次多亏了你。”
英笑着说:“是大家共同的功劳。我们继续努力,相信很快就能达到目标效率!”
在众人的努力下,太阳计划终于突破了技术瓶颈……
喜欢腾和英的星辰大海请大家收藏:()腾和英的星辰大海
癫!孤身边全是神经病! 震惊!高冷影帝是忠犬小狗 贵妃自请下堂后,陛下他后悔了 人在警局破大案,各色美女迷恋我 葬神碑 小师妹,你强的很不合理 震惊!团宠神豪宿主是什么邪操作 重生刘辩,掌汉末英豪 和白月光抢皇位那些年 网游之开局天赋掠夺,技能全靠抢 八零嫁绝嗣首长多胎后,全员破防 十全少尊 决胜荒野:我和女神的荒岛生活 合欢九尾狐,以媚术迷惑众生 我的侍女是绝色天骄 少年白马之红尘剑仙 赤色军工,刚建国你就要造航母? 睡前异故事 精灵游 纪晓岚:开局杀乾隆
我们在地球两千五百年的流浪航程中掌舵我们在怪兽入侵的世界里驾驶机甲我们在病毒横行的世界中拯救人类我们在丧尸病变的都市里再造一方净土我们在天灾肆虐后的蛮荒中寻回文明茫茫汪洋之上,张天元获得了一座岛屿,从此成为领主游戏的玩家之一。他看着自家这个可以打开电影世界传送门的基地,不由陷入了沉思。如果他能从2012带过来70亿人,再从流浪地球带过来35亿人,那他是不是赢定这场游戏了?如果您喜欢电影救世主,别忘记分享给朋友...
关于偏执墨少的掌中娇高冷老公不听话怎么办?当然是一哄二扑三亲亲!前世,她被渣男贱女蛊惑,死的凄惨。重活一世,她不光要报仇雪恨,更要抱紧老公的大粗腿,在他的怀里撒娇,在他的心上撒野!世人皆知他俊美矜贵,杀伐果断,无情狠戾。却只有她知他的腹黑妖孽,偏执也温柔。宝贝,只要你笑,我这颗心都可以给你,但你要是对他们笑我就亲手把他们的心都挖给你。...
穿越是一件好事,可穿越到一个过于危险的世界却是一件毋庸置疑的坏事。于是,苏明决定要当一个龙套,不把自己练成十里坡剑神,誓不罢休。然而我是小时候住在你家附近的邻居,从小跟着你一起玩到大的,你忘了吗?你是我的恩人,要不是你当初给我的一块面包,我就不会有今天,所以,我会用一辈子来报答你。所有人都把我当怪物,只有你一直把我当人,这一生,我只会承认你一个。当聚光灯一个接着一个的出现在自己的眼前时,苏明整个人都不好了。这人设一点都不龙套!!!(PS已完本五本长篇小说少女大召唤全方位幻想直死无限奇迹的召唤师魔王不必被打倒,总计字数两千万以上,更新有节操,各位书友可以放心食用。)如果您喜欢我明明只想当龙套,别忘记分享给朋友...
分身一号,你可是我最看重的手下,你赶紧去福利副本给我打点钱!你要打多少?先定一个小目标,打他一个亿。分身二号,你可是跟了我不少年了,你竟然背着我在副本世界里面谈恋爱了?对象...
关于官道至尊被女朋友甩了,我转身就和市长的女儿好上了,从此走上了一条飞黄腾达的通天官路,在官场上纵横睥睨...
李云枫被主神空间召唤,穿梭在各个世界内执行任务。生化危机世界,李云枫拳打丧尸,手撕暴君。型月世界,李云枫大战各路英灵。魔兽世界,李云枫化身副本Boss,迎战各路脚男。主神你小子是我最好的打手。李云枫告诉主神我不是你的棋子,而我会打败你!如果您喜欢崛起主神空间,别忘记分享给朋友...