手机浏览器扫描二维码访问
对于普通人来说,比起黎曼猜想、费马大定理、哥德巴赫猜想等世界知名的数学难题,“纳维-斯托克斯方程”就显得颇为陌生,多数人甚至不知道这到底是什么玩意。
但对于从小就喜欢数学和理科的秦克来说,“纳维-斯托克斯方程”却是如雷贯耳的存在!
“纳维-斯托克斯方程”,即(okeseation),简称n-s方程,是数学界与物理界都非常知名的一个非线性偏微分方程组,被业界称为“流体运动的牛顿第二定律”,主要描述了粘性不可压缩流体(如液体和空气等)流动的基本力学规律。
这个运动方程自1827年由克劳德·路易·纳维(cude-louisnavier)根据以流体动量守恒的理论提出后,泊松、圣维南和乔治·斯托克斯分别进行了深入研究,并最终在1945年推导出来,形成一系列复杂至极的方程组。
n-s方程也被誉为世上最有用的方程组之一,因为它建立了流体的粒子动量的改变率(力)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力、产生于分子的相互作用)以及引力之间的关联。
正是因为它建立了这样的关联,使得它可以描述出液体任意给定区域的力的动态平衡,是流体流动建模的核心,在流体力学中有十分重要的意义。
以此为基础,它既可以应用于模拟气候变化,洋流运向,甚至可以模拟出厄尔尼诺这样的全球性气象系统,也可以用于研究水管里的水流运动乃至于血液循环等流体运动。
它也可应用到具体与日常生活相关的设计上,比如机翼的流体升力研究、车辆外壳的流体力学设计、空气污染效应的流动扩散分析等等。
看到这里,是不是觉得它的用途大得惊人?
问题是,n-s方程虽然意义重大也很实用,但它是一个非线性偏微分方程,求解非常困难和复杂,在求解思路或技术没有进一步发展和突破前,只有在某些十分简单的特例流动问题上才能求得其精确解。
目前,全世界的数学家依然未能证明在三维坐标、特定的初始条件下,n-s方程式是否有符合光滑性的解,也尚未证明若这样的解存在时,其动能有其上下界。
上面这句话以通俗易懂的方式来解释,那就是现在整个世界的数学界,都在寻找n-s方程的通解,以证明该方程的解总是存在,以便通过这组方程准确地描述出任何流体、在任何起始条件下,未来任一时间点的情况。
但对于n-s方程这样用数学理论阐明都困难的一组方程,想去证明这个方程组的解总是存在,又是何其的困难!
所以经过两百年来无数的数学家投入无数的精力,也不过只有大约一百多个特解被解出来,唯一真正算得上是有点儿特殊成果的,是数学家让·勒雷在1934年时证明的,n-s方程的弱解存在,可以在平均值上满足n-s方程,但也仅此而已,无法在每一点上满足。
此外夏裔数学家陶宗师也曾写过一篇《fiiblowupforanaveradthree-dinsionalokeseation》的论文,将n-s方程全局正则性问题的超临界状态屏障形式化,让n-s方程的研究又有了新的推进,但距离解决“n-s方程的存在性与光滑性的问题”还很遥远。
为此,“三维空间中的n-s方程组光滑解的存在性问题”,被米国克雷数学研究所设定为七个千禧年大奖难题之一。
可以说,谁能将这个问题研究清楚,并找出和证明这个通解,那将会催化出无数新的数学工具、数学方法、物理理论,引领着数学界和物理界实现迈步式的大发展!
到了那时,基本上物理的诺贝尔奖、马塞尔·格罗斯曼奖,数学的菲尔兹奖、克拉福德奖、沃尔夫数学奖等等大奖都可以拿到手软了,更别说由之带来巨大的社会经济效益、对人类文明的推动作用!
正是深知这个纳维-斯托克斯方程的难度与意义,当秦克看到系统给予的奖励居然是《非线性偏微分方程‘纳维-斯托克斯方程’的探究与详解(前篇)》时,脑海里只有一个念头——无论如何,都必须把这个奖励拿到手!
虽然不知道这个“探究与详解”,是否就能证明“三维空间中的n-s方程组光滑解的存在性问题”并求出方程组的通解,但凭着秦克对这个系统那丰富得不可思议的知识库的了解,这份被评为s级的知识必然是惊世骇俗的!
只要能将之理解透彻,哪怕只是“前篇”,也足够让秦克名扬世界的数学界了,到时别说是清木、北燕大学了,向来以傲慢著称的普林斯顿大学怕都来跪求他去读书,哦不,应该是任教!
不过,秦克很快就冷静下来了,就算自己获得了这份知识,也得能看得懂啊!
那起码得有极深厚的大学物理基础,以及大学数学基础,甚至更高层次的研究生、博士知识才行,不然知识给他了,他看不懂也是白瞎。
哪怕将来看懂了、研究透彻了,想发表出来,也必须有足够的名气,有超级数学天才的光环,这样你发表的论文才有可能受到数学界的重视,并不会引人猜疑、拖去切片解剖。
为此,秦克必须继续自己的数学竞赛之旅,io的金牌甚至是冠军,是必不可少的,物理方面的竞赛也得杀入世界赛事中,而数学方面的专业论文,也得开始着手了。
从这方面来看,系统一直通过任务在引导着他走正确的道路。
起码先发表一些学术水平的数学论文,积累名气是很有必要的第一步。
以后有机会,物理的学术论文也得搞起来。
竞赛与学术论文,两者相辅相成,才能奠定他未来顶尖数学家、顶尖物理学家的地位与形象,到时再发表“纳维-斯托克斯方程”的论文就顺理成章了。
仰望完星空与未来,秦克重新把目光投注回到这个任务本身——发表第一篇学术论文,而且得是在国家级学术期刊发表一篇“数学分析”方面的专业学术论文。
不过学术论文啊……
我连作文都只写过八百字的,让我写学术论文?
秦克陷入了沉思,然后决定向前排的施存远教授求教。毕竟这可是正儿八经名牌大学的研究生导师,虽然远州大学与清北是没法子比,但在华海省也是最好的大学了,位列985、211之列。
施存远在数学方面的学术水平是毋庸质疑的。
想到这里,秦克轻轻敲了敲前排的座位:“施老师,方便吗?我有个问题想请教您。”
帝辇之下 灾厄之冠 宋医生的野玫瑰 将君赋 万欲妙体 神话修仙:种出百万天赋点 东京氪命流怪异游戏 我真不是文娱教父啊 诡异:我的器官变异了 盘龙之紫金传说 诸天之始于武道 静水微澜 全民时代:兵种丧尸,感染全世界 穿书之炮灰女配是条鱼 霸业王权 从斩妖除魔开始的东京生活 东国岛津的野望 我的艺人天天想退出娱乐圈 我在修仙界开创网络时代 重生从一次不成功的分手开始
关于最强道士在都市一双鬼眼,看透天地人间一团鬼力,足以搅乱日月星辰。顷刻之间,斩妖除恶!红尘浩荡,恶鬼太多你争我抢,血腥都市。亿万里江山,谁敢纵横?他叫陶夏,从在地下墓穴得到鬼眼神通开始,...
刚穿越就发现自己怀孕,孩子他爹还是已故的战神冥王。沐芸婳说流掉!初夜没有,落红可丢,拖油瓶不能留!随身戴个麝香荷包,转眼就跑到了白莲花大姐房里,搞得大姐绝育熬个藏红花,又被庶母误食,同父异母的小弟弟化成一滩血水想杀掉本王的孩子?死鬼王爷捏着她的下巴问,可以!杀了一个,再造一双!如果您喜欢绝色狂妃冥王的天才宠妃,别忘记分享给朋友...
得到败国系统,重生到的世界,成为英明神武的周武王姬发姬发泪眼说道我没想强国,我没想当明君贤王,我只想败国,可能你们不理解,但是我不败国就治不好病就得死!看,这就是一代贤王的风采,多么的高瞻远瞩,多么的标新立异,没有贤君周武王做的这些,就没有强国,朋友们让我一起加油干,为了伟大的强国梦!如果您喜欢洪荒之我为姬发,别忘记分享给朋友...
遭哥哥陷害,她被送上陌生男人的床。一夜,她失了身,爸爸意外坠楼,妈妈心脏病发她失去所有。几近走投无路时,他犹如天神一般降临在她的面前。他说我需要一个听话...
关于诸天最苟龙套作为一个基本活不过几章的龙套,如何生存下去呢?1降低存在感,成为小透明,你看不见我,看不见我。2变强。主世界莽荒纪。龙套世界九鼎记,斗破苍穹,沧元图,吞噬星空,盘龙,遮天等...
关于魔道传说原本只是想用自己的天赋和努力一展头脚,为死去的父母报仇,而后归于平凡,却因姐姐的死去而性格大变。不甘心命运,不相信平庸。穆云修灵力,控战偶,寻神物,踏天堑。带着一魔一宠,走上一条注定与世界作对的魔道之路。...